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Abstract

The mechanical design of the target module of an accelerator driven sub-critical nuclear reactor system (ADSS) calls for an analysis of
the related thermal–hydraulic issues because of the sheer large amount of heat generation in its spallation target system during the course
of nuclear interactions with the molten lead bismuth eutectic (LBE) target. The window of the target module is subject to high heat fluxes
due to the direct impingement of high energy proton beam on its surface. A large amount of heat is deposited on the window and in the
bulk of the LBE in the spallation region. Therefore, the problem of heat removal by the LBE is a challenging thermal–hydraulic issue.
For this, one will need to examine the laminar/turbulent flows of low Prandtl number fluids (LBE) in a complex target module of an
ADSS. In this study, the equations governing the flow and thermal energy are solved numerically using the streamline upwind
Petrov–Galerkin (SUPG) finite element (FE) method. Special consideration has been given to the window under various thermal con-
ditions, such as, isothermal, uniform and variable heat flux. The analysis has been extended to the case of heat generation in the liquid
LBE. The principal purpose of the analysis is to trace the temperature distribution on the beam window and in the LBE. This also helps
to check the suitability of the geometry in avoiding the recirculation or stagnation zones in the flow space that may lead to hot spots.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In near future, ADSS will play a significant role as an
alternative source of power generation. ADSS possesses a
high potential for nuclear radioactive waste transmutation
and operates in sub-critical conditions [1]. The target mod-
ule of an ADSS is shown in Fig. 1. In the target system, a
high energy proton beam from an accelerator irradiates a
target, which is basically a flowing heavy density liquid
metal (LBE). As a result, the liquid metal produces spalla-
tion neutrons that initiate a fission reaction in the sub-crit-
ical core. The target system of an ADSS has two sections:
(1) the downcomer, incoming (2) the riser, outlet. The pro-
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tons are induced on the target through a vacuum pipe
closed by a window at the end. Therefore, the beam win-
dow is subject to high heat fluxes, thermal and mechanical
stresses. A large amount of spallation heat is deposited on
the window and in the LBE.

Though it is relatively easy to remove the total spalla-
tion heat by the LBE, it is crucial to achieve this without
the target temperature exceeding the stipulated tempera-
ture in any region of the flow. There should not be any
recirculation or stagnation zones leading to the hot spots,
inadequate window cooling, generation of vapors, etc. This
necessitates a detailed flow analysis in the spallation region,
flow region near the entrance of the annular zone along
with the determination of temperature distribution on the
beam window.

The thermal–hydraulic behavior of a liquid–metal spall-
ation region may be examined in either of the two ways:
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Nomenclature

Cf skin friction coefficient
Cp coefficient of pressure
D inlet hydraulic diameter
kn dimensionless turbulent kinetic energy

(=(k)/(V0)2)
ne total number of elements
Ni, Nm trial (also called shape/basis) functions
[N] diagonal matrix, i.e. diag[N1;N 2; . . . ;N np ]
Nu Nusselt number
p dimensionless pressure (=(p)/(q)(V0)2)
Re Reynolds number
u, v dimensionless velocity components in x and y

directions (=(u)/(V0), (v)/(V0))
Uh discontinuous streamline upwind contribution

of weighting functions
W admissible test function
W discontinuous test function for SUPG, ref. Eq.

(25)
Wh finite element approximation to test function W

[W] diagonal matrix, i.e. diag[W 1;W 2; . . . ;W np ]
x, y dimensionless cylindrical coordinate along

radial and axial direction (=(x)/(D), (y)/(D))

Greek symbols

�n dimensionless dissipation rate (=(�)/(V0)3/(D))
h dimensionless temperature (=(T � T1)/

(Tw � T1))
mt,n dimensionless turbulent kinematic viscosity

(mt/m)

at,n dimensionless thermal diffusivity (at/a)
s dimensionless time (t/(D/V0)); t = dimensional

time
n, g normalized local coordinates
R2 two-dimensional region
Cg, Ch parts of C; ref. Eqs. (15) and (16)
rk coefficients used in two (k–�) equation turbu-

lence model
r� coefficients used in two (k–�) equation turbu-

lence model
rt coefficients used in wall treatment for energy

equation
Ds dimensionless time step
$ Laplacian operator
� quantity following the symbol is independent of

integrating variables

Subscript
1 inlet condition

Superscripts

j index for axisymmetry (=0 for planar and 1 for
axisymmetric)

e element
h finite element approximation of a function
n nth level time step

* provisional values
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The first option is to build a full-size target and install it in
a proton beam, suitably supplied with coolant under design
conditions and instrumented. The second is to simulate
such a target using a state-of-the-art computational fluid
dynamics (CFD) tool. Different geometric designs of LBE
based ADSS are presently under consideration all over
the world. The current status in the development of ADSS
is presented by Maiorino et al. [2]. However, each of these
models warrants a thorough investigation. Careful numer-
ical experiments are needed to identify the flow stagnation
and recirculation zones in the complex target system of an
ADSS.

A review of the recent literature reveals that there
have been few investigations focussing on the window
region of an target system. Dury et al. [3] have analyzed
the spallation zone near the beam window of the
European Spallation source liquid–metal target facility
numerically using CFX-4. They considered liquid mer-
cury as the spallation target. Cho et al. [4] have com-
puted the heat transfer and flow characteristics in a
simplified version of the spallation zone of an axisymmet-
ric target module called HYPER using ANSYS and CFX
packages. While there is a circular flow guide in the
target module considered by Dury et al. [3] there is no
such flow guide in the model studied by Cho et al. [4].
Recently, window based ADSS models, such as, XADS
[5] with funnel shaped flow guides have been proposed.
In this model, the downcomer part of the target loop
is separated from the riser part by using a flow guide.
The flow takes a 180� turn around the tip of flow guide.
Unlike in the earlier studies, in this case, it is essential to
consider the entire target module of an ADSS rather
than the riser part of the target system alone.

Therefore, in this paper we consider the entire target
system with a straight flow guide (see Fig. 1). Further,
we account for the high energetic proton beam impinge-
ment on the window surface by introducing a uniform
and variable heat flux conditions on the window. In view
of the continuous proton beam impingement, window sur-
face may also be assumed to be isothermal for some situ-
ations. Also, we account for the heat generation in LBE
based on FLUKA [6] data. The two equation k–� model
with the wall function approach is used for analyzing tur-
bulent flows. An in-house SUPG-FEM code based on the
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Fig. 1. Computational domain of the target module of an ADSS with boundary conditions.
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projection scheme of Chorin [7] has been developed and
validated. Simulations have been carried out to analyze
the flow and heat transfer characteristics in the target
module of an ADSS for a wide range of Reynolds
numbers.
2. Governing equations and solution scheme

2.1. Governing equations

The flow is considered to be viscous, incompressible and
turbulent. The geometry of interest is axisymmetric. The
computational domain shown in Fig. 1 is discretized using
small quadrilateral elements. All variables including the
velocity components, pressure, temperature, kinetic energy
and its dissipation rate are located at element nodes. The
dimensionless equations governing the axisymmetric mean
flow [8,9] are

Continuity equation

1

xj

o

ox
ðxjuÞ þ ov

oy
¼ 0 ð1Þ
Momentum equations
ou
os
þ u

ou
ox
þ v

ou
oy

� �

¼ � op
ox
þ 1

xj

1

Re
o

ox
xjmeff

ou
ox

� �
þ o

oy
xjmeff

ou
oy

� �� �
þ Su

ð2Þ

ov
os
þ u

ov
ox
þ v

ov
oy

� �

¼ � op
oy
þ 1

xj

1

Re
o

ox
xjmeff

ov
ox

� �
þ o

oy
xjmeff

ov
oy

� �� �
þ Sv

ð3Þ

where

Su ¼
1

xj

1

Re
o

ox
xjmeff

ou
ox

� �
þ o

oy
xjmeff

ov
ox

� �
� 2jmeff

u
x

� �
ð4Þ

Sv ¼
1

xj

1

Re
o

ox
xjmeff

ou
oy

� �
þ o

oy
xjmeff

ov
oy

� �� �
ð5Þ



4636 K. Arul Prakash et al. / International Journal of Heat and Mass Transfer 49 (2006) 4633–4652
where p is the pressure and (u,v) are the radial and axial
mean velocity components. Here, (x,y) the radial and axial
coordinates, respectively. The equations describing two-
dimensional plane flows can be obtained from Eqs. (1)–
(5) by setting j = 0. The effective turbulent viscosity meff =
(1 + mt,n) is calculated using the k–� model of turbulence
[10]

meff ¼ 1þ clRe
k2

n

�n
ð6Þ

Transfer of the turbulent kinetic energy kn, its dissipation
rate �n and the temperature distribution h are modeled as
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where Sh is the heat generation source term.

Production
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where Gn is the production term. Finally, mt,n and at,n can be
written as

mt;n ¼ ClRe
k2

n

�n
; at;n ¼ ClRe

Prk2
n

rt�n
ð11Þ

Also, Cl = 0.09, rk = 1.0, r� = 1.3, rt = 0.9, C1� = 1.44,
C2� = 1.92

Reynolds number ðReÞ ¼ V 0D
m

; Prandtl number ðPrÞ ¼ m
a

where D is the characteristic length, m the kinematic viscosity,
a the thermal diffusivity and V0 is the mean inlet velocity.
2.2. Solution scheme

2.2.1. Eulerian velocity correction approach

This method is essentially based on the projection
scheme of Chorin [7], which was originally developed in a
finite difference context and identical to the Marker and Cell
(MAC) method of Harlow and Welch [11]. This has been
extended to two-dimensional finite element method by
Donea et al. [12], Ramaswamy et al. [13] and du Toit [14].
In the present study, the algorithm has been applied to
the axi-symmetric solution of turbulent flow. The solution
for each time step is obtained through following four steps.

Step 1: Calculation of provisional velocities. The provi-
sional velocities are calculated from the momen-
tum equations by dropping the pressure terms.
Since these explicitly advanced velocities do not
necessarily satisfy the continuity equation, they
are called as provisional velocities and shown
starred. For instance, the radial component of
velocity can be written as
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Step 2: Solution of pressure equation. The pressure term,
which was initially ignored may be taken into
account now. Thus we obtain� � � �

unþ1¼ u� �Ds

op
ox

nþ1

; vnþ1¼ v� �Ds
op
oy

nþ1

ð12Þ

Taking the divergence of Eq. (12) and imposing
the condition ($ Æ V)n+1 = 0, we get the Poisson
equation
½r2p�nþ1 ¼ 1

Ds
ðr � V �Þ ð13Þ
the right hand side (RHS) of which can be com-
puted from the provisional velocities. The Poisson
equation is then solved using incomplete Cholesky
preconditioned conjugate residual method with
proper boundary conditions to obtain the pressure
at the (n + 1) time step.

Step 3: Velocity correction. The velocities are corrected at
the next time step by updating the provisional
velocities using the evaluated pressure. Eq. (12)
is used to calculate the velocities un+1 and vn+1.
One can interpret the role of pressure in an incom-
pressible flow as a projection operator which pro-
jects an arbitrary vector field into a divergence free
vector field.

Step 4: Calculation of turbulent kinetic energy and its dissi-

pation rate. Solve the turbulent kinetic energy (kn)
Eq. (7) and the dissipation (�n) Eq. (8) to calculate
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turbulent viscosity (mt,n) and turbulent diffusivity
(at,n) using Eq. (11). A steady solution is obtained
through pseudo time marching. Finally, the energy
Eq. (9) is solved with the steady state velocity field.

3. Formulation

Eqs. (2) and (3) without the pressure term and Eqs. (7)–
(9) may be represented as a single equation shown below:
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Let X (geometry of interest) be a bounded region in R2

bounded by the piecewise smooth boundary C. Let
x = {x,y} denote the vector of spatial coordinate of a gen-
eric point in X and let s denote the time value in the inter-
val I = [0,T]. Also consider~n as the outward normal vector
to C and Cg, Ch as sections of C which satisfy the following

Cg

[
Ch ¼ C ð15Þ

Cg

\
Ch ¼ ; ð16Þ

The superimposed bar in Eq. (15) represents set closure and
; in Eq. (16) denotes the empty set. Now our focus is on the
finite element formulation of the problem defined by Eqs.
(12)–(14). The formulation is also presented in Maji and
Biswas [15].

3.1. Finite element formulation

In order to find a discrete solution of Eqs. (12)–(14), we
assume X is discretized in ne quadrilateral elements such
that
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e¼1
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where Xe denotes the interior domain of an element. Let Ce

be boundary of Xe. Finally, the ‘interior boundary’ Cint is
defined as the following
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Let (/h,ph) be an element of Sh and Wh be an element of Vh,
where Sh and Vh are finite dimensional sub-spaces of the
trial (S) and test (V) spaces respectively and are defined as

Sh ¼ fðUhÞ 2 ðC0ðXÞÞ6; Uh ¼ g/ and ph ¼ s on C�gg
V h ¼ fW h 2 C0ðXÞ; W h ¼ 0 on C�gg

We assume that this C0(X) functions are typical finite ele-
ment shape (trial) functions of Lagrange type which will
also belong to H1(X) functional space. Now finite element
method can be formulated by requiring the discrete solu-
tion /h, ph to satisfy the weak form of Eqs. (12)–(14).
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Let the finite set {Ni} represent a basis for Sh, while {Wi}
be the basis for Vh. The function Ni, Wi are associated with
the node i of the finite element mesh. The discrete solution
/h, ph and Ch

/ can be approximated within each element as
a linear combination of the trial (basis) function. The
expression for /h is given as

/h ¼
XNp

m¼1

f/ðsÞgmN m ¼ fNgTf/ðsÞg ð22Þ

where Np is the total number of nodes in each element and
{N} represents a column matrix of dimension 1 · Np and
{N}T represents transpose of {N}. The curly brackets { }
enclosing some quantity indicate that the corresponding
nodal quantities are arranged node-wise in a column vector
form. The trial functions {N} are piecewise bilinear. Simi-
larly the expressions are written for ph and Ch

/.
The four noded bilinear elements are mapped on a 2 · 2

square using isoparametric transformation. The test func-
tions and trial functions for the velocity correction (20)
and pressure Poisson equation (21) are same in this formu-
lation. However for Eq. (19) formulation will be different
which will be explained in the next section. Following the
mass lumping concept the final form of Eqs. (20) and
(21) are as follows:
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• Pressure Poisson equation
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Fig. 2. (a) Outer domain, (b) computational grid.
3.2. Streamline upwind Petrov–Galerkin (SUPG) based

formulation

The numerical scheme based on standard Galerkin
(Bubnov–Galerkin) finite element method for convection–
diffusion problems produces non-physical oscillatory
solution when convection dominates over diffusion. To
overcome this cross-wind problem, Brooks and Hughes
[16] introduced streamline upwind Petrov–Galerkin
(SUPG) technique with the application of modified weight-
ing functions for all terms of the governing equations given
by

W h ¼ W h þ U h ð25Þ

where Wh is a continuous weighting function and Uh is the
discontinuous streamline upwind contribution. Both Wh

and Uh are assumed to be smooth on the element interiors.
The above discontinuous test functions Uh introduce a
corrective diffusion which is highly anisotropic with a
non-zero coefficient only in the direction of the resultant
element velocity vector calculated at the geometric center
of the element. This is to make this term active only in
the direction of the resultant element velocity and thereby
effectively introduces upwinding in multi-dimensional
problem. It is to be noted that in the SUPG formulation,
Uh weights only on the element interiors. Also, the element
coefficient matrix is mass lumped. Incorporating all these
concepts, the Eq. (19) may be rewritten as
Fig. 3. Streamlines and pressure contours �0.06(0.02)0.1 of lid-driven
cavity flow for Re = 1000 (129 · 129 grid).
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which allows us to compute the provisional value / at the
new time step in terms of the quantities at the previous time
step value.
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4. Boundary conditions

4.1. Laminar flow

The boundary conditions of interest in this investigation
are
U
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Non-dimensionalization of energy equation for the case
of flux boundary condition is done with respect to dimen-
sional heat flux at the window. However the final form of
the energy equation remains the same.

4.2. Turbulent flow

The standard k–� turbulence model, which relies on the
high-Reynolds number assumption, is not valid very near
to the wall where the viscous effects are predominant. The
wall function approach has been followed to model the near
wall region [17]. In this approach the flow near the solid
boundaries is not solved for but is assumed to obey the
law of the wall. The tangential velocity and the turbulence
quantities are then specified. The estimation of wall shear
stress based on the finite element method is adopted using
Benim and Zinser [18]. The conditions for velocity and tem-
perature can be specified in the following way:

• Inlet plane:
v ¼ vðxÞ; u ¼ 0

kn ¼ 1:5I2; �nðxÞ ¼ k3=2
n C3=4

l

� 	.
vx for x < ðk=vÞ

¼ k3=2
n C3=4

l

� 	.
kxp for x > ðk=vÞ

h ¼ 0

ð27Þ

where vs,n is non-dimensional friction velocity, x+ is
given by xvs/m, I is the turbulent intensity, v = 0.42
Re
0 250 500 750 1000

3

4

5

6

7

8

9

0

1

2

3

4

5

Armaly et al. (Expt.)

Armaly et al. (Num.)

Biswas et al.

Kim and Moin

Present

6. Re-attachment length versus Reynolds number for the backward
g step.
which is known as Von Karman constant, k is a con-
stant prescribing ramp distribution of mixing length in
boundary layers and equal to 0.09 and E = 9.743. The
boundary conditions at the outlet and the confining
walls are given as the following [19]:

• Symmetry wall:
Fi
u ¼ 0;
of
on
¼ 0; f ¼ ðv; h; kn; �nÞ
• Outlet section:
of
on
¼ 0; f ¼ ðu; v; h; kn; �nÞ
The wall functions due to Launder and Spalding [17] are
used to mimic the near wall region for the no slip walls.
For, xþp P 11:63

sy
w;n ¼

vpC1=4
l k1=2

n;p v

lnðExþp Þ
ð28Þ

where xþp ¼ xp ReC1=4
l k1=2

n;p . The subscript p refers to the first
grid point adjacent to the wall.

Instead of using Eqs. (7) and (8) near the wall, kn, �n at
point p are computed from

kn;p ¼
v2

s;n

C1=2
l

; �n;p ¼
v3

s;n

vxp
ð29Þ

where, vs,n is the non-dimensional friction velocity.
5. Grid generation and code validation

The computational grid is generated using algebraic
method, smoothened and clustered by elliptic partial
g. 7. Streamlines for (i) Re = 500, (ii) Re = 700 and (iii) Re = 1000.
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Fig. 8. Pressure contours for (i) Re = 500, (ii) Re = 700 and (iii) Re = 1000.
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grid generation technique using Poisson’s equations. The
outer domain and the computational grid is shown in Fig. 2.

In order to validate our inhouse SUPG-FE code, it is
tested on two benchmark problems, namely the flow in a
lid-driven cavity, the flow over a backward-facing step.
Our grid-independent results for these problems are com-
pared with those available in the literature.

5.1. Lid driven cavity

A Lid driven cavity flow is the most commonly used
computational experiment to demonstrate the performance
of an incompressible Navier–Stokes solver. A comprehen-
sive collection of results for different Reynolds number
has been presented by Ghia et al. [20]. The boundary con-
ditions have been taken same as in [20]. The streamlines
and pressure contours are shown in Fig. 3. The u velocity
profile along the vertical centerline of the cavity is
compared with the benchmark solutions of Ghia et al.
[20] for Re = 100, 400 and 1000. The results are in good
agreement with the benchmark solution (see Fig. 4).

5.2. Backward-facing step flow

The Backward-facing step is considered for varying
Reynolds number to verify the stability and accuracy of
the proposed methods when analyzing an inflow–outflow
problem. The H/h expansion ratio has been taken as
1.9423 (same as Armaly et al. [21]). The streamlines and
pressure contours for Re = 500 are shown in Fig. 5. The
variation of reattachment length is compared with the
experimental and numerical results of Armaly et al. [21]
and numerical results of Kim and Moin [22] and Biswas
et al. [23]. The results are found to be in nice agreement
with the experimental and numerical data which is shown
in Fig. 6. The computational results start deviating from
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experimental values for Re > 600. The reason for discrep-
ancy is thought to be a result of the three-dimensionality
of the flow for Re > 400 [23].

5.3. Grid independence test for ADSS geometry

The Numerical simulation has been performed for
Re = 500 using the isothermal boundary imposed on the
window of the computational domain shown in Fig. 1.

The following three meshes are considered for the grid
sensitivity analysis:

(A) 33 grid points in the cross-stream direction · 271 grid
points in the streamwise direction having 8943 nodes
and 8640 bilinear elements.

(B) 51 grid points in the cross-stream direction · 307 grid
points in the streamwise direction with 15,657 nodes
and 15,300 bilinear elements.

(C) 69 grid points in the cross-stream direction · 367 grid
points in the streamwise direction with 25,323 nodes
and 24,888 bilinear elements.
As one moves from coarse grid to fine grid, the maxi-
mum deviation in the Nusselt number calculated along
the beam window is found to be less than 1%. Therefore,
in the present study the grid consisting of (33 · 271) nodes
is chosen for all computations.
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6. Result and discussions

6.1. Laminar flow and heat transfer characteristics

Fig. 7 shows streamlines pattern in the flow field for
Re = 500, 700 and 1000. At Re = 500, a primary vortex is
observed near the inlet section along the guide due to sud-
den expansion of the flow domain. In addition, recircula-
tion regions are observed in the riser section starting
from 180� turn all along the flow guide and also near to
the exit plane along both the beam window and the flow
guide. At Re = 700 and 1000, the size of the primary vortex
decreases due to increasing velocity field and multiple
vortices are created in the recirculation region in the riser
section along the flow guide. The flow separation and for-
mation of the vortices near the inlet section and close to the
exit plane can be attributed to the expansion of the flow
passage establishing an adverse pressure gradient therein.
Near the tip of the flow guide, the fluid experiences a
change (180�) in direction. The higher velocity fluid moves
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fluid on the flow guide eventually leads to a flow separation
and reversal.

For all the Reynolds numbers, pressure (Fig. 8) is seen
to increase near the zone of sudden expansion immediately
after the inlet. Subsequently, it decreases uniformly in the
straight part of the flow passage upto the bend. The pres-
sure drop and thereby the pressure gradient is high very
close to the 180� turn. Thereafter the pressure recovers
up to the concave downstream, where secondary recircula-
tion zone occurs and finally the fluid attains the atmo-
spheric pressure at the exit plane.

The temperature contours for the isothermal window
boundary for different Reynolds numbers are shown in
Fig. 9. In almost all the cases, the flow is with a developing
temperature field since the liquid metal under consideration
has a very low-Prandtl number (0.02) and heat transfer
occurs only near the exit plane. In the case of low-Prandtl
number fluids, the thermal boundary layer grows faster
than the velocity boundary layer. The thermal diffusivity
dominates over the molecular diffusivity. Thermal bound-
ary layer, which is seen to manifest along the window, gets
thinner with increasing Reynolds number. The energy is
transported through the steeper temperature gradient.
6.1.1. Calculation of local Nusselt number, skin friction

coefficient and coefficient of pressure

The local skin friction coefficient and the Nusselt num-
ber based on the inlet temperature of the stream are defined
in non-dimensional form as

CfS ¼
2

Re
oU
on






along the beam window

; NuS ¼�
oh
on






along the beam window
Fig. 19. Heat generation fun
Here, n denotes direction normal to the beam window, S

is the streamwise direction along the beam window and
U denotes non-dimensional velocity tangential to the wall.

Fig. 10 compares the Nusselt number distribution
based on the inlet temperature (T1) along the window
of the target system of an ADSS for the above-mentioned
Reynolds numbers. It has been observed that Nusselt
number increases initially and then decreases. This is in
agreement with the observed variation of the thermal
boundary layer. Finally the Nusselt number increases
slightly near the exit plane because of boundary layer sep-
aration and creation of a small recirculation zone entail-
ing better mixing near the exit. The Nusselt number
increase with increasing Reynolds number. Fig. 11 shows
Cf · Re variation along the surface of the window. From
the plots it is evident that the Cf · Re remains constant
along the leading edge of the window and then decreases
at the exit. The peak value of Cf · Re increases with
increasing Reynolds number. Also, the spatial location
of the occurrence of peak values shifts towards the lead-
ing edge of the beam window for increasing Reynolds
number. These may be attributed to the combined influ-
ence of curvature effect, presence of prominent vortex
and the change from free slip to no slip boundary at
the leading edge of window.

Fig. 12 shows the variation of coefficient of pressure
(P � Pin) in the streamwise direction along the centerline
of the flow space. For all the cases, Cp reduces initially.
This is due to smooth backward facing step like configura-
tion near the inlet. Pressure is recovered partially near the
bend and again it drops drastically due to 180� turn and
becomes almost constant. There are some oscillations near
ction in the liquid metal.



K. Arul Prakash et al. / International Journal of Heat and Mass Transfer 49 (2006) 4633–4652 4647
the exit due to the enlargement of flow area. Fig. 13 depicts
the isotherms for the variable temperature along the
window. A linear variation having a non-dimensional value
of unity near the leading edge of the window and zero near
the trailing edge is given as boundary condition. From the
figure it is observed that the temperature contours gets
sharper with the increase in Reynolds number and unlike
the case with constant temperature it is not diffused over
the curved flow space formed by the window and the flow
guide. The peak value lies near the downstream of the
curvature because the liquid metal convects the variable
temperature. The Nusselt number plot, in the case of vari-
able wall temperature (Fig. 14) shows an initial increase,
and then it reduces all along the window. There is sharp
decline in the value which is due to the curvature effect.
Nusselt number increases with the increasing Reynolds
number.
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6.2. Constant heat flux and variable heat flux along the

window

Fig. 15 shows the temperature contours along the win-
dow for constant heat flux. A non-dimensional constant
heat flux value is given as the boundary condition. From
the plot it is evident that the peak value occurs downstream
of the curvature. The temperature contours become shar-
per with the increase in the Reynolds number because more
heat is convected for higher Reynolds number. The value
of the temperature along the window for this case is shown
in Fig. 16. The peak values lies at S = 1.0 which is at the
downstream of the window curvature. The peak value of
the constant flux case is approximately 3.6 times greater
than that of the constant temperature case. The tempera-
ture value along the beam window decreases with the
increase in Reynolds number.
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Fig. 22. Streamline plots for (a) Re = 1.4 · 105, (b) Re = 2.8 · 105 and (c)
Re = 5.6 · 105.

4648 K. Arul Prakash et al. / International Journal of Heat and Mass Transfer 49 (2006) 4633–4652
Fig. 17 depicts the isotherms for the variable heat flux
case. The peak value of the temperature occurs along the
curved portion of the window. The peak value is about
1.6 times greater than that of the case with constant tem-
perature window boundary. The value of the temperature
along the window is shown in Fig. 18. The peak value
occurs at the non-dimensional value of S = 0.8, which is
along the window curvature.

6.3. Heat generation

Heat generation in the liquid metal was not considered
so far. The liquid metal can be reactive as well. While tak-
ing cognition of the presence of heat source, heat genera-
tion function is developed for 1 GeV Proton beam based
on the data obtained from FLUKA code [6]. The heat gen-
eration function is shown in Fig. 19 where the variations
along the axial and radial direction are shown. Fig. 20
shows the temperature contours for the heat generation
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within the LBE and constant heat flux along the beam
window. Fig. 21 shows the temperature contours for the
heat generation within the LBE and variable heat flux
along the window. Unlike for the non-reacting case, here
the influence of the proton beam bombardment on the
window is noticed not only in the downstream of the win-
dow but also upstream, close to the tip of the flow guide.
However for the laminar case, the peak temperature value
lies along the beam window.

6.4. Flow and heat transfer characteristics of turbulent flows

Figs. 22–24 show the streamlines, kinetic energy and
temperature contours for three different Reynolds numbers
1.4 · 105, 2.8 · 105 and 5.6 · 105. Streamline plots shown in
Fig. 22 indicate that there is a flow separation and reattach-
ment in the convex bend along the flow guide near the exit
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Fig. 23. Kinetic energy contours for (a) Re = 1.4 ·
plane and the size of the separated eddy decreases with the
increase in the Reynolds number. A small vortex appears
near the bottom edge of the target system. Another vortex
is seen at leading edge of the return path on the flow guide.
The recirculation zone starts near the 180� turn and its size
decreases with increase in Reynolds number. In the case of
turbulent flows, the flow curvature plays a significant role.
The gradient o�v

oy is non-zero, as is the derivative of �u in
x-direction. Here v02 is produced by the mean shear. The
cross-stream normal stress, u02 develops from the pressure
strain correlation. Near the leading edge of the window,
the fluid experiences concave flow followed by convex flow,
whereas the opposite occurs for flow near the flow guide. It
has been observed for the flows with the curvature, that the
quantity, u0v0 first increases and then decreases in magni-
tude on the window, while the opposite occurs near the
flow guide. Therefore, in the case of turbulent flows, the
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105, (b) Re = 2.8 · 105 and (c) Re = 5.6 · 105.
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enhanced transverse momentum transport occurs towards
the inner boundary of the curved section and the separa-
tion is delayed. As a matter of fact it is prevented; in con-
trast to the situation that arises in laminar flow. The reason
can be attributed to the presence of fluid particles with
higher kinetic energy. Separated flows are observed in the
concave zone of the concave region. Clearly, three
Reynolds numbers give good qualitative consistency, the
vortex formation appears to be well reproduced.

Fig. 23 depicts the variation of kinetic energy in the flow
field. The k–� model predicts the peak of the fluctuations in
the immediate downstream zone of the bend. The kinetic
energy increases further near the window. However, the
physics of turbulence indicates that the turbulent kinetic
energy stems from contributions of low frequency fluctua-
tions. Therefore the k–� model of turbulence cannot cap-
ture the exact distribution of kinetic energy. The kinetic
energy gives an indication of turbulent viscosity distribu-
tion in the flow field. Fig. 24 presents the distribution of
the time–mean temperature over the flow field. At the bend
Fig. 24. Temperature contours (magnified view of the window section) for (a) R

portion shown in the figure (a) and (b)) for Re = 5.6 · 105.
on the window, all the cases show convection from the
wall. The temperature contours indicate that the amount
of heat diffusion towards the radial direction decreases with
the increase in the Reynolds number because more thermal
energy is convected away from the wall by the increased
velocity of LBE. The Nusselt number distribution is shown
in Fig. 25. The maximum value of the Nusselt number lies
downstream of the stagnation zone. The Nusselt number
increases with increasing Reynolds number.

7. Conclusions

A computational study using SUPG based finite element
method has been accomplished to determine the laminar
and turbulent flow and heat transfer characteristics of
LBE in the target module of an ADSS. The geometry has
a sharp 180� turn and straight flow guide. The flow struc-
ture, pressure variation and the temperature along the
beam window for different boundary conditions have been
predicted numerically. In the laminar case of the target
e = 1.4 · 105, (b) Re = 2.8 · 105 and (c) (magnified view of the rectangular
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system, vortices are generated at the smooth backward fac-
ing step near the inlet (primary vortex), near the 180� turn
and at the exit . The size of the primary vortex in the
downcomer section decreases due to increasing Reynolds
number whereas the size of other vortices increases. Tem-
perature contours with isothermal window and variable
temperature boundary indicate the thermal energy diffuses
towards the radial direction along the window. The diffu-
sion decreases with the increase in the Reynolds number.
The Nusselt number and the skin friction coefficient on
the window surface show an overall increase for the
increasing Reynolds number. This may attributed due to
high mass flow rate. The temperature contours for different
thermal boundary conditions are traced and the tempera-
ture distribution on the beam window is calculated. The
peak value of the non-dimensional temperature for the
constant flux case is nearly 2.25 times that of the variable
heat flux case. The isotherms substantiate the above con-
clusion. The isotherms for the case of heat generation in
LBE indicate the following. The thermal source is diffused
upstream of the beam window and extend till the leading
edge of the flow guide (180� turn). The kinetic energy con-
tours depict the distribution of turbulent viscosity. The
temperature contours indicate that the higher mass flow
rate of LBE advects the total spallation heat that is gener-
ated as a consequence of the interaction of the proton
beam and the LBE target system. Since there are vortices
in the bottom wall of the ADSS target module, it is desir-
able that the shape of the flow guide be modified. There will
be high probability of appearance of the hot spots in the
flow space as a consequence of the creation of recirculating
vortices, which is an undesirable feature in the ADSS
design. It is understood that a suitable modification of
the flow guide is likely to improve the thermal–hydraulics
performance of the ADSS target system. Also instead of
a flat bottom wall (with sharp edges), a smoother (curved)
wall is expected to avoid the formation of small recircula-
tion zone on the bottom wall. The streamlines, near the
bottom wall provide the guideline for the shape optimiza-
tion of the curved bottom wall.
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